报告题目:Transfer learning in high-dimensional models
报告人:李赛(中国人民大学)
报告时间:2023年5月24日10:00-11:00
报告地点:腾讯会议:518-212-978
摘要:Transfer learning provides a powerful tool for incorporating multiple related studies into a target study of interest with successful applications in machine learning and biological research. In this talk, I will first introduce the similarity characterization of related tasks and transfer learning algorithms for high-dimensional linear regression. Its theoretical guarantees and minimax optimality will be demonstrated. Next, I will introduce a transferred Q-learning algorithm, which can integrate source data into a target offline or online reinforcement learning problem. Improvement in policy learning will be demonstrated theoretically and numerically.
主讲人简介:李赛,中国人民大学统计与大数据研究院准聘副教授,博士生导师。2018年于罗格斯新泽西州立大学获得统计博士学位,毕业后于宾夕法尼亚老员工物统计系和统计系进行博士后研究,目前的研究方向包括高维数据分析、迁移学习、因果推断的统计方法及理论和在遗传学、流行病学和机器学习中的应用。