魏金龙

发布者:系统管理员发布时间:2017-05-13浏览次数:7151


姓名:魏金龙

性别:男

籍贯:安徽阜阳

民族:汉族

所在系:数理与金融统计

教研室:数理统计

是否博导:否

是否硕导:是

职称:副教授

现任职务:教研室副主任

电子邮箱:weijinlong@zuel.edu.cn


讲授课程:随机过程,时间序列分析,计量经济学


研究方向:微分方程的随机正则化,时间序列


个人简历(教育背景、工作经历等)

  1. 20211--至今伟德国际 伟德国际 副教授

  2. 20147--202012  伟德国际 伟德国际 讲师

  3. 20179--20182格拉斯哥大学   数学与统计学院 访问

  4. 20099--20146华中科技大学   数学与统计学院 硕士-博士

  5. 20059--20096阜阳师范大学   数学与统计学院 学士


科学研究:

5年论文(英文)

  1. Small mass limit in mean field theory for stochastic N particle system. J. Math. Phys. 63(8)(2022) 1-10.

  2. The central configuration of the planar (N+1)-body problem with aregular Npolygon for homogeneous force laws. Astrophys. Space Sci. 367(7)(2022) 1-9.

  3. Equilibrium points in restricted problems on S2 and H2J. Math.Phys. 63(6)(2022) 1-38.

  4. Stochastic transport equation with bounded and Dini continuous drift. J. DifferentialEquations 323 (2022) 359–403.

  5. Noise and stability in reaction-diffusion equations. Math. Control Relat. Fields 12(1) (2022) 147-168.

  6. Notes on spatial twisted central configurations for 2N-body problem. Astrophys. Space Sci. 367(1)1-10.

  7. Strong solutions of stochastic differential equations with square integrable drift. Bull. Sci. Math. 174 (2022) 1-31.

  8. Periodic solution of stochastic process in the distributional sense. J. Evol. Equ. 21(4) (2021)4005–4037.

  9. A Kolmogorov-type theorem for stochastic fields. Stoch. Anal.Appl. 39 (2021)1009-1024.

  10. Blowup of parabolic equations with additive noise. Appl. Math. Lett. 121(2021)1-5.

  11. Analysis of a two-dimensional triply haptotactic model with a fusogeniconcolytic virus and syncytia. Z. Angew. Math. Phys. 72(4)(2021) 1-23.

  12. Kinetic solutions for nonlocal stochastic conservation laws. Fract. Calc. Appl. Anal. 24(2)(2021) 559–584.

  13. Stochastic regularization for transport equations. Stoch. Partial Differ. Equ. Anal. Comput. 9(1)(2021) 105–141.

  14. On a generalized population dynamics equation with environmental noise. Statist. Probab. Lett. 168 (2021) 1-7.

  15. Averaging principle for stochastic differential equations under a weak condition. Chaos 30(12) (2020) 1-5.

  16. Notes on nontrivial multiple periodic solutions for second-order discrete Hamiltonian system. Bull. Malays. Math. Sci.Soc. 43(2020) 4393-4409.

  17. The second-order parabolic PDEs with singular coefficients and applications. Stoch. Anal. Appl. 38(6) (2020) 1102–1121.

  18. The effect of noise intensity on parabolic equations. Discrete Contin. Dyn. Syst. Ser. B 25(5) (2020) 1715–1728.

  19. Blowup solutions for stochastic parabolic equations. Statist. Probab. Lett. 166(2020) 1-6.

  20. The dependence on initial data of stochastic Camassa-Holm equation.Appl. Math.Lett.107 (2020) 1-7.

  21. Infinitely many non-constant periodic solutions with negative fixed energy for Hamiltonian systems.Appl. Anal. 99(4) (2020)627–635.

  22. Blowup solutions of Grushin's operator. Appl.Math.Lett. 97(2019)20–26.

  23. Nonconstant periodic solutions with any fixed energy for singular Hamiltonian systems. Discrete Contin. Dyn. Syst. Ser.B 24(4)(2019)1617–1625.

  24. Schauder estimates for stochastic transport-diffusion equations with Lévyprocesses.J. Math. Anal. Appl. 474(1) (2019) 1–22.

  25. BMO and Morrey-Campanato estimates for stochastic convolutions and Schauder estimates for stochastic parabolic equations. J. Differential Equations 266(5) (2019) 2666–2717.

  26. Notes on gap solitons for periodic discrete nonlinear Schrödinger equations. Math. Methods Appl. Sci. 41(16) (2018) 6673–6682.

  27. Kinetic solutions for nonlocal scalar conservation laws. SIAM J. Math. Anal.50(2)(2018)1521–1543.

5年论文(中文)

家庭异质性、互联网使用与商业保险参保--基于中国家庭金融调查数据. 南方金融 9 (2019) 51-62.

科研项目

主持并完成国家自然科学基金青年基金一项,项目编号:11501577,项目名称:一类随机守恒律系统适定性及相关问题的研究,年限:2016.1--2018.12


教学研究:

  1. 指导22届本科生司马成晨: 投资者行为及情绪对股票市场收益波动性的影响分析,获校优秀学士学位论文;

  2. 指导21届本科生赵鸶鸶: 生物医药行业投资价值分析,获校优秀学士学位论文;

  3. 指导20届本科生肖凡宇: 猪肉价格短期波动对物价指数传导影响研究,获校优秀学士学位论文;

  4. 参与完成大规模在线开放课程(MOOCs)一项:时间序列分析,2019年。