陆璐

发布者:向雪莲发布时间:2017-05-13浏览次数:3972

姓名:陆璐

性别:

籍贯:湖北洪湖

民族:

所在系:大学数学教研中心

教研室:微积分教研室

是否博导:

是否硕导:

职称:副教授

现任职务:

电子邮箱:lulu@zuel.edu.cn

讲授课程

微积分,概率论与数理统计,线性代数,高等数学(文)


研究方向

非线性偏微分方程


个人简历(教育背景、工作经历等)

  1. 20157月——至今  伟德国际  讲师

  2. 20129月——20156月 华中师范大学  博士学位

  3. 20099月——20126月 华中师范大学  硕士学位

  4. 20059月——20096月 华中师范大学  学士学位


主持项目

  1. 国家自然科学基金青年项目:2017--2019,一类椭圆型方程基态解的存在性及其性质的研究


发表论文

  1.  Y. B. DengY. J. GuoL. LuOn the collapse and concentration of Bose-Einstein condensates with inhomogeneous attractive interactions. Calc. Var. Partial Differential Equations 54 (2015), no.1, 99-118.

  2.  Y. B. DengL. LuW. ShuaiConstraint minimizers of mass critical Hartree energy functional: existence and mass concentration. J. Math. Phys. 56 (2015), no.6, 061503.

  3.  Y. J. GuoL. LuMean-field limit of Bose-Einstein condensates with attractive interactions in R2. Acta Math. Sci. Ser. B 36 (2016), no.2, 317-324. 

  4.  Y. HeL. LuW. ShuaiConcentrating ground-state solutions for a class ofSchrödinger-Poisson equations in R3 involving critical Sobolev exponents. Commun.Pure Appl. Anal.15 (2016), no.1, 103-125.

  5.  T. X. Hu; L. Lu; Multiplicity of positive solution for Kirchhoff type problems in R3. Topol. Methods Nonlinear Anal. 50 (2017), no.1, 231–252.

  6.  T. X. Hu; L. Lu; On some nonlocal equations with competing coefficients. J. Math. Anal. Appl. 460(2018), no.2, 863884.

  7. Y. B. Deng; Y. J. Guo; L. Lu, Threshold behavior and uniqueness of ground states for mass critical inhomogeneous Schrödinger equations.J. Math. Phys. 59 (2018), no. 1, 011503.

  8.  T. X. Hu; L. Lu; Infinitely many positive solutions for Kirchhoff equations with competing coefficients. Z. Angew. Math. Phys. 70 (2019), no.2, 70:53

  9.  T. X. Hu; L. Lu; On the existence of least energy solution for Kirchhoff equation in R3. Math. Method Appl. Sci.43 (2020), no. 7, 4585-4597.

  10. L. LuL2 normalized solutions for Schrödinger systems in R3. Nonlinear Anal.-Theor.43 (2020), no. 7, 111621.

  11. T. X. Hu; L. Lu; Asymptotic properties of standing waves for Asymptotic properties of standing waves for Maxwell-Schrödinger-Poisson system. J. Math. Anal. Appl. 486 (2020), no. 10, 123835.